Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михайлович

Должность: ректор дата подписания: 16.20.2023 09.37.33 материа пы для промежуточной аттестации по дисциплине:

Уникальный программный ключ:

e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

Физика, 2 семестр

Код, направление подготовки	09.03.02 Информационные системы и технологии
Направленность (профиль)	Информационные системы и технологии
Форма обучения	очная
Кафедра-разработчик	Кафедра экспериментальной физики
Выпускающая кафедра	Кафедра информатики и вычислительной техники

Типовые задания для контрольной работы (2 семестр)

Вариант 1

- 1. Кольцо из медной проволоки помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца 30 см, диаметр проволоки 2 мм. Определить скорость изменения магнитного поля, если ток в кольце 1 А.
- 2. В однородном магнитном поле равномерно вращается прямоугольная рамка с частотой 600об/мин. Амплитуда ЭДС равна 3 В. Определить максимальный магнитный поток через рамку.
- 3. Сила тока в обмотке соленоида, содержащего 1500 витков, равна 5 А. Магнитный поток через поперечное сечение соленоида составляет 200мкВб. Определить энергию магнитного поля в соленоиде.

Вариант 2

- 1. В катушке длиной 0,5 м, диаметром 5 см и числом витков 1500 ток равномерно увеличивается на 0,2 А за одну секунду. На катушку надето кольцо из медной проволоки с площадью сечения 3 мм². Определить силу тока в кольце.
- 2. Две длинные катушки намотаны на общий сердечник, причем индуктивность этих катушек 0,64 Гн и 0,04 Гн. Определить во сколько раз число витков первой катушки больше, чем второй.
- 3. Тороид с воздушным сердечником содержит 20 витков на 1 см. Определить объемную плотность энергии в тороиде, если по его обмотке протекает ток 3 А.

Вариант 3

- 1. Показать возможные энергетические уровни атома с электроном в состоянии с главным квантовым числом равным 6, если атом помещен во внешнее магнитное поле.
- 2. Во сколько раз увеличиться радиус орбиты электрона у атома водорода, находящегося в основном состоянии, при возбуждении его фотоном энергии 12.09 эВ?
- 3. Определить механический момент молекулы O₂ в состоянии с вращательной энергией 2.16 мэВ? d=121 пм.

Вариант 4

- 1. Записать возможные значения орбитального квантового числа и магнитного квантового числа для главного квантового числа равного 4.
- 2. Какую работу нужно совершить, чтобы удалить электрон со второй орбиты атома водорода за пределы притяжения его ядром?
- 3. Определите, во сколько раз орбитальный момент импульса электрона, находящегося в f состоянии, больше, чем для электрона в p состоянии?

Типовые задания к экзамену по дисциплине (2 семестр)

Проведение промежуточной аттестации в 2 семестре в виде экзамена. Задания на экзамене содержат 2 теоретических вопроса и задачу.

Задание для показателя оценивания дискриптора «Знает»	
Вариант 1	теоретический,
1. Классический закон сложения скоростей (вывод формулы, рисунок).	вопросы к
2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей.	экзамену
Вариант 2	
1. Понятия пространства, времени, материальной точки, траектории, пути,	
перемещения.	
2. Циркуляция вектора напряженности. Потенциальный характер	
электростатического поля.	
Вариант 3	
1. Ускорение тела. Прямолинейное неравномерное движение. Движение с	
отрицательным ускорением.	
2. Электрические заряды. Взаимодействие электрических зарядов. Закон	
Кулона. Принцип суперпозиции для сил.	
Вариант 4	
1. Скорость тела. Прямолинейное равномерное движение. Путь и	
перемещение при прямолинейном движении.	
2. Проводник во внешнем электрическом поле. Теоремы Фарадея	
Вариант 5	
1. Криволинейное движение. Нормальное и тангенциальное ускорения.	
2. Диэлектрики. Поляризация диэлектриков.	
Вариант 6	
1. Первый закон Ньютона. Границы применимости классической механики.	

2. Тепловое излучение.

Вариант 7

- 1. Фотоэффект.
- 2. Электроемкость. Конденсаторы. Последовательное соединение конденсаторов.

Вариант 8

- 1. Масса тела. Импульс тела. Закон сохранения импульса.
- 2. Электроемкость. Конденсаторы. Параллельное соединение конденсаторов.

Вариант 9

- 1. Вращательное движение тела. Угловое перемещение, угловые скорость и ускорение тела. Путь и перемещение при криволинейном движении тела.
- 2. Эффект Комптона.

Вариант 10

- 1. Период и частота вращения. Связь линейных и угловых кинематических величин.
- 2. Постоянный электрический ток. Сила тока, вектор плотности тока. Уравнение непрерывности. Условие стационарности тока.

Вариант11

- 1. Кинетическая энергия вращающегося тела.
- 2. Явление самоиндукции. Индуктивность.

Вариант 12

- 1. Момент инерции. Теорема Штейнера.
- 2. Модели атома.

Вариант 13

- 1. Сила. Второй закон Ньютона.
- 2. Закон Ома для участка цепи. Электрическое сопротивление. Закон Ома в дифференциальной форме.

Вариант14

- 1. Третий закон Ньютона. Принцип независимости действия сил.
- 2. Сторонние силы. Электродвижущая сила источника. Напряжение. Обобщенный закон Ома.

Вариант 15

- 1. Работа силы. Потенциальная энергия тела.
- 2. Атомное ядро.

Вариант 16

- 1. Кинетическая энергия тела. Закон сохранения механической энергии тела.
- 2. Сторонние силы. Электродвижущая сила источника. Закон Ома для однородного и неоднородного участков цепи.

Вариант 17

- 1. Тепловое излучение.
- 2. Работа силы Ампера

Вариант 18

- 1. Момент импульса материальной точки. Момент силы. Уравнение моментов.
- 2. Правила Кирхгофа. Последовательное соединение сопротивлений.

Вариант 19

- 1. Фотоэффект.
- 2. Работа и мощность в цепи электрического тока. Закон Джоуля-Ленца.

Вариант 20

- 1. Кинетическая энергия вращающегося тела. Полная энергия твердого тела.
- 2. Закон Био-Савара-Лапласа. Магнитное поле прямолинейного проводника.

Вариант 21

1. Гармонические механические колебания. Кинематические

характеристики гармонических колебаний

2. Эффект Комптона.

Вариант 22

- 1. Модели атома.
- 2. Дифракция света. Метод Френеля.

Вариант 23

- 1. Атомное ядро.
- 2. Интерференция света. Сложение двух когерентных волн.

Вариант 24

- 1. Диэлектрики. Поляризация диэлектриков.
- 2. Поляризация света. Закон Брюстера.

Вариант 25

- 1. Волновые процессы в упругих средах.
- 2. Поляризация света. Закон Малюса.

Задание для показателя оценивания дискриптора «Владеет»

Вид задания

Вариант 1

Задача. Расстояние между двумя точечными зарядами $Q_1 = 1$ мкКл и $Q_2 = -Q_1$ равно 10 см. Определить силу F, действующую на точечный заряд Q = 0.1 мкКл, удаленный на расстоянии $r_1 = 6$ см от первого и на $r_2 = 8$ см от второго зарядов.

Вариант 2

Задача. Электрическое поле создано двумя точечными зарядами $Q_1 = 40$ нКл и $Q_2 = -10$ нКл, находящимися на расстоянии d = 10 см друг от друга. Определить напряженность Е поля в точке, удаленной от первого заряда на $r_1 = 12$ см и от второго на $r_2 = 6$ см.

Вариант 3

Задача. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС E каждого элемента равна 1,2 B, внутреннее сопротивление r=0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R=1,5 Ом. Найти силу тока I во внешней цепи.

Вариант 4

Задача. ЭДС батареи аккумуляторов 12 В, сила тока I короткого замыкания равна 5 А. Какую наибольшую мощность P_{max} можно получить во внешней цепи, соединенной с такой батареей?

Вариант 5

Задача. Электрон движется в однородном магнитном поле с индукцией B=9 мТл по винтовой линии, радиус R которой равен 1 см и шаг h=7,8 см. Определить период T обращения электрона и его скорость υ .

Вариант 6

Задача. Электрон в атоме водорода движется вокруг ядра по окружности радиусом $R=53\,$ пм. Определить магнитный момент p_m эквивалентного кругового тока

Вариант 7

Задача. Соленоид с сечением $S = 10 \,\mathrm{cm}^2$ содержит $N = 10^3$ витков. При силе тока I = 5 А магнитная индукция B поля внутри соленоида равна 0,05 Тл. Определить индуктивность L соленоида.

Вариант 8

Задача. Магнитное (B=2 мТл) и электрическое (E=1, 6 кВ/м) сонаправлены. Перпендикулярно векторам \vec{B} и \vec{E} влетает электрон со скоростью υ = 0,8 Мм/с. Определить ускорение электрона.

.

практический

Вариант 9

Задача. На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15 т. Орудие стреляет вверх под углом $\varphi=60^{\,0}$ к горизонту в направлении пути. С какой скоростью υ_1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью $\upsilon_2=600$ м/с?

Вариант 10

Задача. На горизонтальную ось насажены маховик и легкий шкив радиусом R=5 см. На шкив намотан шнур, к которому привязан груз массой m=0.4 кг. Опускаясь равноускоренно, груз прошел путь s=1.8 м за время t=3 с. Определить момент инерции J маховика. Массу шкива считать пренебрежимо малой.

Вариант 11

Задача. Тело брошено под углом к горизонту. Оказалось, что максимальная высота подъема $h_{\text{мах}} = \frac{1}{4} S$ (где S — дальность полета). Пренебрегая сопротивлением воздуха, определите угол броска к горизонту.

Вариант 12

Задача. Найти радиус R вращающегося колеса, если известно, что линейная скорость v_1 точки, лежащей на ободе, в 2,5 раза больше линейной скорости v_2 точки, лежащей на расстоянии r=5 c_M ближе к оси колеса.

Вариант 13

Задача.

В баллоне вместимостью V=25 л находится водород при температуре T=290 К. После того как часть водорода израсходовали, давление в баллоне понизилось на $\Delta p=0,4$ МПа. Определить массу m израсходованного водорода.

Вариант 14

Задача. Смесь гелия и аргона находится при температуре T=1,2 кК. Определить среднюю квадратичную скорость $\langle \nu_{\rm KB} \rangle$ атомов гелия и аргона.

Вариант 15

Задача. Точка совершает гармонические колебания. В некоторый момент времени смещение точки x = 5 см, скорость ее v = 20 см/с и ускорение a = -80 см/с². Найти циклическую частоту и период колебаний в рассматриваемый момент времени и амплитуду колебаний.

Вариант 16

Задача.

Расстояние d между двумя щелями в опыте Юнга равно 1 мм, расстояние l от щелей до экрана равно 3 м. Определить длину волны λ , испускаемой источником монохроматического света, если ширина b полос интерференции на экране равна 1,5 мм.

Вариант 17

Задача. На щель шириной a=0.05 мм падает нормально монохроматический свет ($\lambda=0.6$ мкм). Определить угол ϕ между первоначальным направлением пучка света и направлением на четвертую темную дифракционную полосу.

Вариант 18

Задача. Угол Брюстера α_b при падении света из воздуха на кристалл каменной соли равен 57 0 . Определить скорость света в этом кристалле.

Вариант 19

Задача. Во сколько раз ослабляется интенсивность света, проходящего через два николя, плоскости пропускания которых образуют угол $\alpha = 30^{\,0}$, если в каждом из николей в отдельности теряется 10 % интенсивности падающего на него света?

Вариант 20

Задача. Угол Брюстера $\epsilon_{\text{в}}$ при падении света из воздуха на кристалл каменной соли равен 57°. Определить скорость света в этом кристалле. где $\Delta \ell = 0.01 \ell$.

Вариант 21.

Задача. Мощность излучения абсолютно черного тела $N=34~\mathrm{kBr}$. Найти температуру T этого тела, если известно, что его поверхность $S=0.6~\mathrm{m}^2$.

Вариант 22

Задача. Какую энергетическую светимость $R_{\rm 3}$ имеет абсолютно черное тело, если максимум спектральной плотности его энергетической светимости приходится на длину $\lambda = 484$ нм?

Вариант23

Задача. На какую длину волны λ приходится максимум спектральной плотности энергетической светимости абсолютно черного тела, имеющего температуру, равную температуре $t=37\,^{\circ}\mathrm{C}$ человеческого тела, т.е. $T=310~\mathrm{K}$?

Вариант 24

Задача. Длина волны света, соответствующая красной границе фотоэффекта, для некоторого металла $\lambda_0=275$ нм. Найти минимальную энергию ϵ фотона, вызывающего фотоэффект.

Вариант 25

Задача. Фотоны с энергией $\epsilon = 4,9$ эВ вырывают электроны из металла с работой выхода A = 4,5 эВ. Найти максимальный импульс p_{max} , передаваемый поверхности металла при вылете каждого электрона.