Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Косенок Сергей Михтестивое задание для диагностического тестирования по дисциплине:

Должность: ректор

Дата подписания: 02.07.2025 12:59:12 Уникальный программный ключ: Общая и аналитическая химия, семестр 3 e3a68f3eaa1e62674b54f4998099d3d6bfdcf836

4	554f4998099d3d6bfdcf836 Код, направление	05.03.06 Экология и природопользование
	подготовки	1 1
	Направленность (профиль)	Экология
	Форма обучения	очная
	Кафедра- разработчик	химии
	Выпускающая кафедра	Экологии

№ п/ п	Провер яемая компет енция	Задание	Варианты ответов	Тип сложности вопроса
1	ОПК- 1.2	Для системы $Fe_2O_3(\Gamma) + 3 H_2(\Gamma) = 2Fe(\Gamma) + 3H_2O(\Gamma)$ Константа равновесия равна:	a) K=[H ₂ O]3 / [H ₂]3 6) K==[H ₂ O] / [H ₂] B)K=[Fe] [H ₂ O] / [Fe ₂ O ₃] [H ₂] Γ) K==[Fe] [H ₂ O]3 / [Fe ₂ O ₃] [H ₂]3	Низкий
2	ОПК- 1.2	Ион Mn ²⁺ имеет электронную формулу:	a)1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ² 4P ³ δ) 1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ⁰ 4P B)1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ⁰ 3d ⁵ Γ) 1S ² 2S ² 2P ⁶ 3S ² 3P ⁶ 4S ² 4P ⁵	Низкий
3	ОПК- 1.2	Продуктами реакции: $SO_2 + Cl_2 + H_2O =$ являются :	a) H ₂ S O ₄ и HCl; б) H ₂ S и HClO ₃ ; в)H ₂ S O ₃ и HCl O; г) S и HCl O ₃ ;	Низкий

4	ОПК- 1.2	Значение pH =7 наблюдается в растворах всех солей:	a) NH ₄ Cl, NH ₄ NO ₃ , K ₂ S O ₄ б) Na ₃ PO ₄ CuSO ₄ KCl в) FeSO ₄ Na ₂ CO ₃ NaNO ₃ г) NaCl KNO ₃ Na ₂ SO ₄	Низкий
		NaCl KNO ₃ Na ₂ SO ₄		
5	ОПК- 1.2	Для реакции 2NO+O ₂ =2NO ₂ уравнение закона действующих масс имеет вид:	a) $V = kC_{NO}C_{O_2}$ 6) $V = kC_{NO}^2C_{O_2}$ B) $V = k 2C_{NO}C_{O_2}$ Γ) $V = kC_{NO}^2$	Низкий
6	ОПК- 1.2	В реакции KClO ₃ +FeSO ₄ +H ₂ SO ₄ = FeSO ₄ +Fe ₂ (SO ₄) ₃ +H ₂ O восстановителем является:	a) H ₂ SO ₄ б) FeSO ₄ в) Fe ₂ (SO ₄) ₃ г) KClO ₃ .	Средний
7	ОПК- 1.2	В 160 гр. раствора с массовой долей CuSO4 10% содержитсямоль соли.	a) 0,4 6) 0,2 в) 0,1 Г) 0,3	Средний
8	ОПК- 1.2	При взаимодействии 4,6 гр.натрия с 6,4г серы выделяется кДж теплоты (теплота образования сульфида серы равна 372 кДж/моль)	a) 91,2 б) 55,8 в) 37,2 г) 45,6	Средний
9	ОПК- 1.2	Молярная концентрация эквивалентов сульфата меди в растворе, полученном растворением 120 г соли в 1,5 л воды (изменением объема при растворении твердого вещества пренебречь). Равна	Введите число	Средний

10	ОПК- 1.2	Если при увеличении температуры от 20 до 40° С скорость реакции возросла в 9 раз, то значение температурного коэффициента реакции равно	Введите число	Средний
11	ОПК- 1.2	Чтобы рН раствора уменьшилось на единицу, концентрацию ионов Н ⁺ нужно	а) Уменьшить в 10 раз б)Увеличить в 10 раз в)Уменьшить в 2 раза г)Увеличить в 2 раза	Средний
12	ОПК- 1.2	В качестве осаждаемой формы при гравиметрическом определении кальция могут быть использованы следующие малорастворимые соединения:	a) $CaCrO_4$, $K_s^0 = 7.1 \cdot 10^{-4}$; 6) $CaSO_4$, $K_s^0 = 2.5 \cdot 10^{-5}$; B) $Ca(OH)_2$, $K_s^0 = 5.5 \cdot 10^{-6}$; r) $CaCO_3$, $K_s^0 = 3.8 \cdot 10^{-9}$.	Средний
13	ОПК- 1.2	Гравиметрическую форму из осаждаемой получают:	а) высушиванием осадка на воздухе; б) высушиванием осадка при температуре 100-120 °C; в) промыванием осадка органическими растворителями; г) прокаливанием осадка в муфельной печи.	Средний
14	ОПК- 1.2	Осаждение сульфатиона хлоридом бария проводят из подкисленного азотной кислотой раствора, потому что кислая среда замедляет образование центров кристаллизации сульфата бария.	а) верно б) неверно	Средний
15	ОПК- 1.2	Уравнение изотермы адсорбции по Лэнгмюру имеет вид	a) $\Gamma = \Gamma \infty (1 + K_a \varepsilon_p)$, 6) $\Gamma = \Gamma \infty (K_a \varepsilon_p)/(1 + K_a)$, B) $\Gamma = \Gamma \infty (K_a \varepsilon_p)$, $\Gamma = \Gamma \infty (K_a \varepsilon_p)/(1 + K_a \varepsilon_p)$.	Средний
16	ОПК- 1.2	При титровании 15мл КОН израсходовано 12 мл раствора HNO ₃ с	a) 0,896 6) 3,586	Высокий

			n) 2 600	
		молярной	в) 2,688	
		концентрацией 0,1	г) 1,792	
		моль/л. Масса щелочи в		
		200 мл этого раствора		
		равнограмма.		
17	ОПК-	Рассчитайте и укажите	а) 4-10 ⁻⁷ г;	Высокий
	1.2	потерю ВаСО3 в граммах	5) 9 10-8 -:	
		при промывании 100 мл	б) 8-10 ⁻⁸ г;	
		0,1 моль/л раствора	в) 4-10 ⁻⁹ г;	
		$(NH_4)_2CO_3$:	_) 0 10-III _	
			г) 8-10-ш г.	
18	ОПК-	Напишите уравнение	a) 1	Высокий
	1.2	реакции взаимодействия	6) 2	
		хлорида магния с	0) 2	
		$Na_2[H_2Y]$ B	c) 4	
		молекулярном и ионном		
		виде и ответьте на		
		вопрос:		
		Чему равно		
		координационное число комплексообразователя в		
		образовавшемся		
		соединении?		
19	ОПК-	$KMnO_4 + FeSO_4 + H_2SO_4$	a).0,152	Высокий
	1.2	\rightarrow K ₂ SO ₄ +Fe ₂ (SO ₄) ₃ +	6).1,520	
		$MnSO_4 + H_2O$	в).3,040	
		Eo MnO ₄ $^{-}$ /Mn2+ = 1,51 B		
		Eo $Fe^{3+}/Fe^{2+} = 0.77 B$		
		Какова масса FeSO ₄ в		
		пробе?		
		Рассчитать по Т КМпО ₄ /		
		FeSO ₄ , если		
		$V_{\Pi} = 100 \text{ мл}; V_{T} = 10 \text{ мл};$		
20	OFFIC	Vp-ра КМпО ₄ =10 мл) 1 0	D v
20	ОПК- 1.2	Водородный показатель (рН) буферного раствора,	a) 1.,0; б).3,0;	Высокий
	1.4	состоящего из равных	в) 4,0;	
		объемов 0,1 М раствора	г) 4,76	
		уксусной кислоты		
		(показатель константы		
		кислотности равен 4,76) и		
		0,1 М раствора ацетата		
		натрия, равен:		
		-		