Информация о ФИО: Косенок Должность: рег	владельце:	магностического тестирования по дисциплине: анализ больших данных в экономике, 1 и 2 семестр
Уникальны й о р	д ;р направление д674505480 8099d3d6bfdcf836	38.04.01 Экономика
	правленность рофиль)	Внутренний контроль и аудит
Фо	рма обучения	очная
	федра- зработчик	Экономических и учетных дисциплин
	іпускающая федра	Экономических и учетных дисциплин

1 семестр

Проверяемая	Задание	Варианты ответов	Тип
компетенция			сложности
			вопроса
ОПК-2.1	Перевод рассматриваемой	А) верификации	низкий
	экономической задачи на	Б) предмоделирования	
	язык математических	В) идентификации	
	терминов и соотношений	Г) спецификации	
	производится на этапе:		
ОПК-2.3	По типу используемых	А) парные и	низкий
	данных различают	множественные	
	эконометрические модели:	Б) пространственные и	
		временные	
		В) с одним уравнением и	
		системы одновременных	
		уравнений	
		Г) линейные и	
		нелинейные	
ОПК-2.3	Совокупность методов		низкий
	обнаружения наличия,		
	тесноты и направления		
	взаимосвязи между двумя		
	или более случайными		
	величинами – это		
	анализ		
ОПК-2.2	В случае если по		низкий
	результатам проверки		
	гипотез будет отвергнута		
	верная нулевая гипотеза		
	возникает ошибка рода		
ОПК-2.1	В регрессионной модели	А) свободным членом	низкий

	типа $y = a + bx + \varepsilon$	Б) угловым	
	параметр b является:	коэффициентом	
	параметр в является.	В) случайным членом	
		Г) регрессором	
ОПК-2.1	Отрицательное значение	А) не возможно;	средний
OHK-2.1	коэффициента	Б) свидетельствует об	среднии
		,	
	корреляции:	отрицательной линейной	
		связи между признаками;	
		В) свидетельствует о	
		нелинейной связи между	
		признаками;	
		Г) свидетельствует о	
		выражении значений	
		признаков в	
		отрицательной шкале.	
ОПК-2.2	Для корректного	А) Тесная связь остатков	средний
	применения метода	модели друг с другом	
	наименьших квадратов	Б) Равенство нулю	
	при формировании	математического	
	регрессионных моделей	ожидания остатков	
	должны соблюдаться	модели	
	условия:	В) Минимум суммы	
		остатков модели	
		Г) Постоянство	
		дисперсии остатков	
		модели	
		Д) Максимум суммы	
		квадратов остатков	
		модели	
		Е) Независимость	
		остатков модели от	
	Vozovopyza sasaza	регрессоров	<u>u</u>
ОПК-2.3	Установите соответствие		средний
	между компонентом		
	множественной		
	регрессионной модели и		
	формулой его расчета:		
	Компонент:		
	А. Вектор коэффициентов		
	регрессии		
	Б. Сумма квадратов		
	остатков модели		
	В. Вектор наблюдений		
	зависимой переменной		
	Г. Общая сумма квадратов		
	зависимой переменной		
	Формула:		
L	· • • • • • • • • • • • • • • • • • • •	1	ıI

	1. $(X^{T}X)^{-1}X^{T}Y$		
	$2. (Y - XB)^{T}(Y - XB)$		
	3. XB + E		
	4. ESS + RSS		
ОПК-2.2	Установите соответствие		средний
	между эконометрическим		
	показателем и		
	используемой для его		
	расчета функцией в MS		
	Excel		
	Показатель:		
	А. Критическое значение		
	статистики Фишера;		
	Б. Значение p-value для		
	статистики Фишера;		
	В. Свободный член		
	эконометрической модели;		
	Г. Значение в		
	соответствии с линейной		
	аппроксимацией по		
	методу наименьших		
	квадратов.		
	Функция:		
	1. ГРАСПОБР		
	2. F.РАСП.ПX		
	3. OTPE3OK		
	4. ТЕНДЕНЦИЯ		
ОПК-2.2	Отношение коэффициента	A) t-статистики	средний
	регрессии к его	Стьюдента	
	стандартной ошибке,	Б) F-статистики Фишера	
	вычисленное по модулю –	B) статистики χ^2	
	это расчетное значение:	Г) уровня значимости α	
ОПК-2.1	Значение статистики	A) -1	средний
	Дарбина-Уотсона,	Б) 0	1 ' '
	соответствующее	B) 1	
	отрицательной	Γ) 2	
	автокорреляции остатков	Д) 4	
	эконометрической модели:		
ОПК-2.1	Неоднородность		средний
O111X-2.1	дисперсии остатков		Среднии
	регрессионной		
	эконометрической модели		
OTHE 2.1	— это		U
ОПК-2.1	Наличие сильной		средний
	линейной взаимосвязи		
	между регрессорами в		
	эконометрической модели		

	– это	
ОПК-2.2	По выборке из 40	средний
	наблюдений по двум	1
	переменным Х и Ү	
	получены следующие	
	результаты расчетов:	
	среднее значение	
	переменной Х равно 10,	
	среднее значение	
	переменной У равно 30,	
	среднее значение	
	произведения переменных	
	Х и У равно 100. Тогда	
	выборочная ковариация	
	между переменными Х и	
	У составит:	
ОПК-2.2	По выборке из 38	средний
OHK-2.2	наблюдений рассчитан	среднии
	парный коэффициент	
	корреляции между переменными X и Y. Его	
	значение составило 0,8.	
	Определите значение t-	
	статистики Стьюдента для	
ОПК-2.3	коэффициента корреляции	
OHK-2.3	Расположите в правильной	высокий
	последовательности этапы	
	эконометрического	
	анализа:	
	✓ Априорный✓ Полотоный	
	✓ Постановочный ✓ В	
	✓ Верификация модели	
	Информационно-	
	статистический	
	 ✓ Идентификация модели 	
	✓ Спецификация модели	
ОПК-2.3	Расположите в правильной	высокий
	последовательности этапы	
	проверки статистического	
	ряда на	
	гетероскедастичность	
	остатков с использованием	
	теста ранговой корреляции	
	Спирмена:	
	✓ Расчет рангов модулей	
	остатков модели;	
	✓ Ранжирование	

ОПК-2.3	наблюдений по значениям регрессора; ✓ Построение модели парной линейной регрессии; ✓ Расчет случайных остатков; ✓ Расчет рангового коэффициента корреляции Спирмена; ✓ Оценка значимости коэффициента корреляции; ✓ Расчет квадратов разностей рангов регрессора и остатков модели; ✓ Оценка выполнения условия гомоскедастичности. В рамках языка	A) lm (formula, data)	высокий
3111 2.0	программирования R,	Б) line.strip (n, a)	
	используемого для эконометрической	B) code.append (x, y, b) Γ) data.frame (col1, col2,	
	обработки данных,	col3)	
	используются команды и	Д) plot (x, y)	
	функции:	E) self.func (data, line)	
ОПК-2.2	Условия точной	(A) D + 1 < H	высокий
	идентифицируемости или сверхидентифицируемости	(B) D + 1 = H (B) D + 1 > H	
	эконометрических	Γ D - 1 < H	
	уравнений в системе	(Π) D – 1 = H	
	можно проверить по		
	формулам:		
ОПК-2.1	Динамические	А) любые регрессионные	высокий
	эконометрические модели:	модели	
		Б) ранговые модели	
		В) модели с	
		распределенными лагами	
		Г) модели с фиктивными	
		Правторегрессиониле	
		Д) авторегрессионные	
	1	модели	

2 семестр

Проверяемая	Задание	Варианты ответов	Тип
компетенция			сложности
			вопроса
ОПК-5.1	Какой из признаков НЕ	A. Volume;	низкий
	входит в классические	Б. Velocity;	
	3V больших данных?	B. Variety;	
		Γ. Validity.	
ОПК-5.1	Какой инструмент	A. Excel;	низкий
	чаще всего	Б. SPSS;	
	используется для	B. Apache Hadoop;	
	распределённой	Γ. PowerPoint.	
	обработки больших		
	данных?		
ОПК-5.1	Технология		низкий
	используется для		
	хранения и		
	распределённой		
	обработки больших		
	объёмов данных с		
	использованием		
	кластера обычных		
OHIC 7.2	компьютеров		U
ОПК-5.2	Машинное обучение		низкий
	делится на три		
	основные категории:		
	обучение с учителем,		
	без учителя и обучение		
OHIC 5 1	C	A TC	U
ОПК-5.1	Какой метод	А. Кластеризация;	низкий
	машинного обучения	Б. Регрессия;	
	используется для	В. Снижение размерности;	
ОПИ 5 1	прогнозирования?	Г. Ассоциативный анализ.	200
ОПК-5.1	Что из перечисленного	A. Hadoop;	средний
	является фреймворком	Б. Apache Spark; В. Excel;	
	для анализа данных в	Γ. Notepad.	
ОПК-5.2	реальном времени? Какие языки	A. JavaScript;	сполиці
OHR-3.2		A. JavaScript; Б. Python;	средний
	программирования наиболее часто	B. R;	
		Б. К; Г. Java;	
	используются в анализе больших	Д. Swift.	
	данных?	д. эмп.	
	даппыл:		

ОПК-5.2	Соотнесите инструменты с их основным назначением: Инструмент: А. Арасhe Spark; Б. Tableau; В. Наdoop HDFS; Г. Руthon. Назначение: 1. Обработка потоков данных; 2. Визуализация данных; 3. Хранение больших данных; 4. Анализ табличных данных.		средний
ОПК-5.2	Соотнесите этапы Data Science с действиями: Этап: А. Сбор данных; Б. Очистка данных; В. Моделирование; Г. Интерпретация. Действие: 1. Загрузка из API или баз данных; 2. Обработка пропусков и дубликатов; 3. Построение моделей ML; 4. Выводы и визуализация.		средний
ОПК-5.1	Какой алгоритм используется для кластеризации?	A. Decision Tree;B. K-Means;B. Naive Bayes;Γ. Random Forest.	средний
ОПК-5.2	Какой формат файлов чаще всего используется для хранения больших объемов табличных данных?	A. TXT; δ. CSV; B. PNG; Γ. MP3.	средний
ОПК-5.1	– это способ разделения		средний

	портологий по волить	
	наблюдений на группы	
	на основе сходства	
	признаков без	
	использования заранее	
	заданных классов	
ОПК-5.1	Метод позволяет	средний
	уменьшить количество	
	признаков в данных	
	путём преобразования	
	исходных переменных	
	в новые, линейно	
	несвязанные	
	переменные	
ОПК-5.2	Если среднее значение	средний
	дохода по выборке	1 7
	составляет 92000	
	рублей, а стандартное	
	отклонение – 12000	
	рублей, то сколько	
	процентов данных	
	попадает в интервал	
	±1 о при нормальном	
ОПК-5.2	распределении?	
OHK-3.2	В модели	средний
	логистической	
	регрессии вероятность	
	события составила	
	0,84. Каково логит-	
	преобразование этой	
	вероятности (округлите	
	до десятых)?	
ОПК-5.2	Упорядочите типы	высокий
	анализа данных от	
	самого простого к	
	самому сложному:	
	✓ Предиктивный	
	анализ;	
	✓ Диагностический	
	анализ;	
	✓ Описательный	
	анализ;	
	 ✓ Прескриптивный 	
	анализ.	
ОПК-5.2	Расположите модели	высокий
01110 3.2	машинного обучения	DDICORIII
	· ·	
	по принципу	
	увеличения сложности	

	интерпретации:		
	 ✓ Линейная регрессия; 		
	 ✓ Случайный лес; 		
	✓ Нейронная сеть;		
	 ✓ Дерево решений. 		
ОПК-5.1	Какие из следующих	А. Линейная регрессия;	высокий
	методов относятся к	Б. Логистическая регрессия;	
	обучению с учителем?	В. Метод опорных векторов;	
		Г. К-средних;	
		Д. DBSCAN.	
ОПК-5.1	Какие методы	A. PCA;	высокий
	используются для	Б. t-SNE;	
	снижения размерности	B. Autoencoder;	
	данных?	Γ. Random Forest;	
		Д. KNN.	
ОПК-5.2	Какие из следующих	A. Tableau;	высокий
	платформ можно	Б. Power BI;	
	использовать для	B. Google Data Studio;	
	визуализации данных?	Г. Hadoop;	
		Д. PostgreSQL.	