ФИО: Косенок Сергей Михайлович

Должность: ректор

Дата подписания: 01.07.2025 15:20:09

Уникальны**Кгод ринправление** e3a68f3eaa**4654674b5f47**98099d3d6bfdcf836

Документ подписан простой электронной подписью Пестовое задание для диагностического тестирования по дисциплине: Информация о владельце:

Квантовая химия, 6 семестр

04.05.01 Фундаментальная и прикладная химия

Направленность	Аналитическая химия
(профиль)	
Форма обучения	Очная
Кафедра-разработчик	Химии
Выпускающая кафедра	Химии

Проверяем ая компетенц ия	Задание	Варианты ответов	Тип сложности вопроса
ОПК-1.1 ОПК-1.2	Основоположником теории атома водорода стал:	А) Макс Планк В) Эрнест Резерфорд С) Альберт Эйнштейн D) Нильс Бор	Низкий
ОПК-1.1 ОПК-1.2 ОПК-1.3	Согласно принципу неопределённости, невозможно одновременно точно измерить	А) Скорость и массу частицы В) Энергию и импульс частицы С) Координату и скорость частицы D) Заряд и спин частицы	Низкий
ОПК-1.1 ОПК-1.2	При каком условии оператор считается эрмитовым?	А) Если среднее значение оператора вещественное число В) Если оператор имеет комплексное представление С) Если спектр оператора непрерывный D) Если собственное значение равно нулю	Низкий
ОПК-1.1 ОПК-1.2 ОПК-1.3	Гамильтониан — это оператор, соответствующий физической величине:	А) Импульсу В) Координате С) Кинетической энергии D) Полной энергии	Низкий
ОПК-1.1 ОПК-1.2	Какие операторы являются примером некоммутативных операторов?	А) Операторы координаты и импульса В) Гамильтониан и оператор полного момента импульса С) Операторы квадрата полного момента импульса и любой компоненты момента импульса D) Операторы \hat{p}_x и \hat{p}_y	Низкий
ОПК-1.1 ОПК-1.2	При движении электрона в одномерной потенциальной яме разрешённые энергетические уровни образуют:	А) Непрерывный спектр В) Дискретный набор С) Случайное распределение D) Равномерное заполнение промежутков между уровнем нуля и бесконечности	Средний
ОПК-1.1 ОПК-1.2 ОПК-1.3 ОПК-3.1	Какая функция является решением θ-уравнения для водородоподобного атома:	1) присоединенный полином Лежандра 2) полином Шредингера 3) присоединенный полином Лягерра 4) полином Чебышева-Эрмита	Средний

ОПК-5.3			
ОПК-1.1	Квантовые числа,	A) l, m	Средний
ОПК-1.2	определяющие угловую часть	B) n, l	
ОПК-1.3	волновой функции	C) m, s	
ОПК-3.1		1, s	
ОПК-5.3			
ОПК-1.1	Чему равно число узловых		Средний
ОПК-1.2	поверхностей угловой		
ОПК-1.3	составляющей волновой		
ОПК-3.1	функции орбитали 2s (<i>ввести</i>		
ОПК-5.3	число)		
ОПК-1.1	Найдите соответствие между	Система Определители Слейтера 1 $\phi_1(\uparrow)\phi_2(\uparrow)$ A $\phi_1(1)\alpha(1)$ $\phi_1(2)\alpha(2)$	Средний
ОПК-1.2	приведенными системами и	$\begin{vmatrix} 1 & \phi_1(1)\phi_2(1) & A & \phi_1(1)\alpha(1) & \phi_1(2)\alpha(2) \\ \phi_2(1)\alpha(1) & \phi_2(2)\alpha(2) \end{vmatrix}$	-
ОПК-3.2	определителями Слейтера	$2 \varphi_1(\uparrow\downarrow) \qquad \qquad B \varphi_1(1)\beta(1) \varphi_1(2)\beta(2)$	
ОПК-5.3		$\phi(1)\beta(1) \phi(2)\beta(2)$	
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		D $\phi_1(z) \varphi_1(z) \varphi_1(z) \varphi_2(z) \varphi_2(z)$	
		$\varphi_{2}(1)\beta(1) \varphi_{2}(2)\beta(2)$	
ОПК-1.1	Чему равна мультиплетность		Средний
ОПК-1.2	молекулы в триплетном		
ОПК-1.3	электронном состоянии		
	(введите число)		
ОПК-1.1	Найдите соответствие между		Средний
ОПК-1.2	обозначениями электронных	$\frac{ap(r)}{az}$ A) 1s	
ОПК-1.3	орбиталей и их радиальными	B) 2s	
ОПК-3.1	функциями распределения aP(r):	$\frac{1}{a^{p(r)}}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{2}{4}$ $\frac{3}{5}$ $\frac{4}{6}$ $\frac{5}{6}$ $\frac{7}{8}$ $\frac{8}{9}$ $\frac{9}{9}$ $\frac{9}{9}$	
ОПК-5.3		o,s	
		34	
		4.2	
		2 1 2 3 4 5 7/a _p ap(r)) 0,2-	
		0,1	
		31 1 2 3 4 5 6 7 8 9 7/4	
ОПК-1.1	Что служит основой для	A) voltavyvo voltavyvogog dynymyvo	Средний
ОПК-1.1	введения адиабатического	А) медленно меняющаяся функция	Среднии
ОПК-1.2	приближения?	ядерных координат	
	приолижения?	В) малая величина кинетической	
ОПК-5.3		энергии электронов	
		С) большая масса ядер по сравнению	
		с массой электронов	
		D) малая величина кинетической	
		энергии ядер	
		Е) слабое электростатическое	
		взаимодействие между электронной	
		и ядерной подсистемами	
ОПК-1.1	Интеграл	F) обменным	Средний
ОПК-1.2	$\hat{J} = e \iint \psi_i^2(i) r_{ij}^{-1} \psi_j^2(j) d\tau_1 \partial \tau_2$	G) кулоновским	
ОПК-3.2		Н) резонансным	
ОПК-5.3	называют	I) интегралом перекрывания	

ОПК-1.1	Чем метод Хартри-Фока-Рутана	А) введением приближения МО	Средний
ОПК-1.2	отличается от метода Хартри-	ЛКАО	
ОПК-3.2	Фока ?	В) более полным учётом	
ОПК-5.3		электронного отталкивания	
		С) введением приближения	
		самосогласованного поля	
		D) учётом интеграла перекрывания	
		Е) инвариантностью относительно	
OTIL 1 1	10	ортогональных преобразований МО	Высокий
ОПК-1.1 ОПК-1.2	Какие общие требования к	А) определенной во всей области	Бысокии
OHK-1.2	волновой функции $\Psi(\{x\},t)$ должны выполняться	изменения переменных В) неотрицательной	
	должны выполняться	С) симметричной	
		D) антисимметричной	
		Е) конечной	
		F) однозначной	
ОПК-1.1	Выберите правильные	А) входит в состав волновой функции	Высокий
ОПК-1.2	утверждения для радиальной	электрона в атоме ψ (r, θ, φ) как	
ОПК-1.3	составляющей волновой	сомножитель	
ОПК-3.1	функции:	B) R →0 при r →∞	
ОПК-5.3	,	С) волновые функции с одинаковыми	
		$R_{n,l}(r)$ вырождены по энергии	
		D) $R \to \infty$ при $r \to \infty$	
		Е) радиальная часть волновой	
		функции пропорциональна	
		радиусу г ⁿ вблизи начала	
		координат	
		F) радиальные части волновой	
		функции для разных уровней	
		энергии (разных n) обязательно	
	2	пересекаются минимум один раз	
ОПК-1.1	Для конфигурации р ³ найдены		Высокий
ОПК-1.2	термы: ⁵ S, ³ S, ³ P, ¹ D, ³ D.		
ОПК-3.2	Установите последовательность		
ОПК-5.3	состояний по устойчивости		D V
ОПК-3.1	Коэффициенты c_{ij} в разложении		Высокий
ОПК-3.2	$MO \psi_j$ метиленциклопропена в		
ОПК-5.3	простом методе МОХ представим		
	в виде матрицы: 0,282 0,612 0,523 0,523		
	0,252 0,012 0,323 0,323 $0,815 0,254 -0,368 -0,368$		
	$c_{ij} = \begin{pmatrix} 0.815 & 0.254 & -0.368 & -0.368 \\ 0 & 0 & 0.707 & -0.707 \end{pmatrix}$		
	0,506 - 0,749 0,303 0,302		
	Вычислите порядок π -связи P_{12}		
	между 1 и 2 атомами углерода.		
	Ответ введите числом с		
OHK-1.1	точностью до тысячных. Расставьте перечисленные	А) Метод функционала плотности	Высокии
ОПК-1.1	квантово-химические методы в	В) Расширенный метод Хартри-	2220Killi
ОПК-3.2	порядке возрастания точности	Фока	
ОПК-5.3	расчета:	С) Метод Хюккеля	
	_	D) Метод полного	
		конфигурационного	
		взаимодействия	